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1. Introduction

We will show how to generate normal random variables very

rapidly in a computer - for example, at the rate of 10,OOO - 15,000

per second in the IBM 7090. The method is suitable for any computer.

It has evolved from a number of procedures we have considered in

the past, [1] - [3]. The incorporation of successive improvements

has led to a procedure which 1) is fairly easy to program, 2) requires

little storage, 300 - 400 constants, 3) is very fast - it takes

about as long to generate the normal x as the uniform u from

which it comes, and 4) is completely accurate, in the sense that in

theory the procedure returns a random variable with exactly the

required distribution; in practice the result is an approximation

influenced only by the capacity (word length) of the computer.

In short, our method is much faster than any we have heard of,

and is completely accurate. We recommend that it be used as the

basic normal random variable generator in any computer installation.

Comparisons of methods, times, storage requirements, etc., are

given in Section 4.

2. The procedure for decimal computers

We will go into detail for the decimal case. The method for the

binary case is similar and the neceasary modifications vill be given
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in Section 3. Suppose we have a procedure for generating uniform [Opl)

random variables u with, say, 8 decimal places. Then probably

the fastest way to generate a variable x with absolutely continuous

distribution F is to assign a value of x for each of the 108

possible u's according to the relation x = F-l(u). The time

for generating x would then be the time to generate u, look up

the value stored in the location associated with that u, and bring

it to the required place. Unfortunately, this fastest procedure

would require 10 storage locations. Our procedure approaches

this ultimate in speed in the following way: 96 - 97% of the time,

we use the first few digits of u to locate one of only a few

hundred stored values, then we add the last digits of u to that

stored value. The other 3 -.4% of the time, we do what is necessary

to make the resulting mixture come out right. The average time for

the entire procedure still remains close to the ultimate which can

be attained by using 10 storage locations. The compact storage

procedure which enables us to conserve storage space is described in

Now for details of the method. Assume we have a procedure for

producing independent uniform [0,1] random variables

u,u1 ,u2,u3, ...

The problem is to generate a normal random variable X in terms of
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the u's. Let g be the absolute normal density:

2e- 
2

(1) g(x) = -x>

The procedures below provide a random variable with density g; a

random + must be attached at some convenient point in the program,

or else, by doubling the storage requirements, the procedure may be

modified to handle the standard normal density on - c < x < o.

We write g as a mixture of three densities, as pictured in

Figure 1:

(2) g(x) = .9578gl(x) + .0395g 2(x) + .O027g 3 (x).

The probabilities displayed in (2) have been rounded to 4 places;

they are actually used to 10 places in the program. With probability

.9578... we generate a random variable with density gl, with

probability .0395... we generate a random variable with density

g2, and with probability .0027... we generate a random variable

with density g3. The time for g, is very short, for g2 short,

and for gy long.

We may produce a variable with density g, in the form z + .lu,

where z is discrete and u uniform [0,1]. The ocmpaot storage



method described in (4] provides z quickly, with modest storage

requirement. The altitudes of the rectangles in g, are truncated

to three decimal places for use in that method, the remaining

portion is lumped with the toothlike region above the rectangle

and dealt with directly on those infrequent occasions when it in

required.

A variable with density g2 , required about 4 percent of

the time, is produced as follows: One of the"teeth" from 92

is selected with appropriate probability, then a random variable

with the nearly linear density given by that tooth is generated.

The procedure, described in [3], is summarized as follows:

To generate a random variable X with a nearly linear

density function g(x), a <x a + c

such as this or this

enclose g(x) within two parallel lines,
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like this or thin.

b b

a a

Then,

1. Choose independent uniform [0,1] random variables u and v.

2. If max(uv) <a/b put X s +c min(u,v).

3. If not, test: blu -vj < g[s + c min(u,v)]? if yes, put

X- = + c min(u,v); if no, go to step 1 and try again.

In our application of this method, we have c = .1 and the

test in step 3 may be put in the form

kju - vj < ew - 1, where w = -12-[s + .1 min(uv)] 2 - (a + .112)

and k = .l(s + .1) for a = 0,.l,.2,...,.9 and

k = e" + ' O0  
- 1 for a = 1.0,.l,.2,...,2.9.

The ratios a/b are stored in memory locations 230-259. Most

of them are close to 1, so that step 2 of the nearly linear technique

will provide X most of the time; only occasionally will an exponen-

tial subroutine be required.
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Density g3  comes from the tail of g. It will provide our

random variable about 1 time in 400. We then need an absolute normal

variable, JxJ, conditioned by lxi > 3. We get it by choosing one

of a pair of absolute normal variables (xl,x2) lying in the first

quadrant but outside the square:

X2

.0027 .00000

.0027

0 3 .1

We generate (xl.,x 2) by choosing a normal point outside the quarter

circle, rejecting it if it lies inside the square. Thus, if

2 2UlU 2 are independent, uniform [0,1], conditioned by ul + u2  1,
we put

= Ul[+2w

1 ?2

u r 9+2Wx2 2L " 2-'.
1 2

where w has the exponential distribution. We may provide w in the

form - ln(U2 l2 since u24u2 is uniform [0,1] and is independent
13+2) 1 2

of - (see [5]). Then if lies outside the square, we take
U 2  Xx2

whichever of the coordinates that is 3. If both are 3, we might

possibly store one for future use, but the relative frequency for both

3, about 1 in 800, is not enough to justify asking for a possible

stored value. The measures of the regions are given in the figure, so

that 54/(57+54), or about 49% of the time, a pair (x1,x2) lying

outside the quarter-circle will lie outside the square.
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Outline of the program: The following outline describes the procedure

for a decimal machine, and the flow chart on the opposite page describes

the same procedure with a little more detail. Assume that there is a

subroutine for producing independent uniform [0,1] random variables

UUlU2,... on demand. Let the constants C(n) be stored in memory

locations n = 0,1,2,...,289. Let b = 10- 1 . Let u = .dld dd 4d.dd

be the first u, the d's its decimal digits. Then:

1. If 00 < d1 d2 < 79, put x = C(d1 d2) + .Od4d5d6...

2. If 790 dd 2d, < 940, put x = C(d1d2d3 - 771) + .Od d 5d6..

3. If .94 < u < .9973002039, put J = 170 and go to step 5.

4. If .9973002039 < u < 1, form pairs Xl,X 2:

3-2 2ln(u2 + u)

x1 = ul[ 2 2

uI + U2

U1 + 2

3 2 -2ln(u 2+

1 2

until one of the pair xlx 2 is 3, and let that be x; uI and u2

are conditioned by u2 + U2 < i.

5. Test: Is u < C(J)? If yes, go to step 6. If no, put J = J + 1

and repeat step 5.

6. Test: Is u < C(J + 30)? If yes, go to step 8. If no, go to step7.

7. Generate new u and put x = C(J - 30) + bu.

8. Generate new ulU 2 . Test: Is max(ul,u2) < c(J + 60)? If yes,

put x = C(J - 30) + b min(ulu 2). If no, let

w = - .5[C(J - 30) + b min(ulu 2)]
2 - [C(J - 30) + ] 2

and test: Is juI - u 21 < C(J + 90)(ew - 1)? If yes, Put

x = C(J -30) + 6 min(u1,u2). If no, repeat step S.
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To generate a normal variable X in a decimal computer:

M<2<79Y6x C(J+60 Yes + -d do....i

NO.

dI 4d < 94 yes -.x (Im.12C- 71 + Od4 + .1

Nob
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Constants for Loading in Memory of a Decimal Machine

Location Contents

0.A 0 0.5 100 1.6 150 0.5 200 .9422781966 250 .973

1 0.2 51 0.6 101 1.6 151 1.2 201 .9455720777 251 .975

2 0.3 52 0.7 102 1.6 152 1.6 202 .9485514463 252 .974
3 0.3 53 0.7 103 1.6 153 1.7 203 .9511653133 253 .978
4 0.3 54 0.7 104 1.7 154 0.3 204 .9549863293 254 .755

5 0.3 55 0.7 105 1.7 155 1.5 205 .9566914271 255 .970

6 0.3 56 0.7 106 1.7 156 2.0 206 .9604850173 256 .501

7 0.5 57 0.8 107 1.8 157 1.8 207 .9638041343 257 .971
8 0.6 58 0.8 108 1.9 158 2.2 208 .9665717757 258 .968

9 0.6 59 0.9 109 1.9 159 0.2 209 .9689169701 259 .967

10 0.6 60 0.9 110 1.9 160 2.5 210 .9712916782 260 12.5

11 0.6 61 0.9 il1 1.9 161 2.3 211 .9742012516 261 8.20523339
12 0.6 62 0.9 112 1.9 162 2.4 212 .9761328124 262 6.91865398
13 0.8 63 1.0 113 1.9 163 2.1 213 .9784228835 263 20.0
14 0.8 64 1.0 114 1.9 164 0.1 214 .9805795259 264 9.03255791

15 0.8 65 1.1 115 1.9 165 2.7 215 .9830652062 265 4.644444 3
16 1.0 66 1.1 116 2.0 166 0.0 216 .9842240767 266 6.40863082

17 1.0 67 i.1 117 2.0 167 2.6 217 .9863251515 267 10.0

18 1.5 68 1.2 118 2.0 168 2.8 218 .9871415820 268 11.11111111

19 0.0 69 1.2 119 2.0 169 2.9 219 .9888328519 269 14.2857142
20 0.0 70 1.2 120 2.0 170 .9432165072 220 .9894907759 270 16.66666666

21 0.0 71 1.3 121 2.0 171 .9464092887 221 .9907816118 271 7.51041395
22 0.0 72 1.3 122 2.0 172 .9494969394 222 .9917305989 272 5.57434982

23 0.0 73 1.4 123 2.1 173 .9525783787 223 .9930632865 273 5.22886160

24 0.0 74 1.4 124 2.1 174 .9555567647 224 .9938134106 274 25.0
25 0.0 75 1.5 125 2.1 175 .9584896204 225 .9942625460 275 5.96452440
26 0.1 76 1.6 126 2.1 176 .9613885364 226 .9951108014 276 4.39512015

27 0.1 77 1.7 127 2.1 177 .9641982792 227 .9958055523 277 4.92081328

28 0.1 78 1.8 128 2.1 178 .9667888257 228 .9960778669 278 3.96317864

29 0.1 79 0.0 129 2.2 179 .9693677568 229 .9964138342 279 33.33333333

30 0.1 80 0.4 130 2.2 180 .9719365988 230 .973 280 3.44279563

31 0.1 81 0.4 131 2.2 181 .9744749700 231 .996 281 3.778848

32 0.1 82 0.7 132 2.2 182 .9769426279 232 .992 282 3.60202892
33 0.2 83 0.9 133 2.3 183 .9792129152 233 .920 283 4.16906566
34 0.2 84 0.9 134 2.3 184 .9812335540 234 .998 284 50.0

35 0.2 85 0.9 135 2.3 185 .9832493731 235 .982 285 3.15925147

36 0.2 86 1.1 136 2.4 186 .9850207959 236 .990 286 100.0

37 0.2 87 1.1 137 2.4 187 .9864483145 237 4996 287 3.29564243
38 0.3 88 1.1 138 2.5 188 .9878069895 238 .985 288 3.03248964
39 0.3 89 1.1 139 2.6 189 .9891104150 239 .959 289 2.91437825
40 0.4 90 1.3 140 0.7 190 .9902073697 240 .942
41 0.4 91 1.3 141 1.1 191 .9912605179 241 .994
42 0.4 92 1.3 142 1.3 192 .9922362590 242 .986
43 0.4 93 1.3 143 0.4 193 .9931582051 243 .985
44 0.4 94 1.3 144 1.0 194 .9940219494 244 .890
45 0.4 95 1.3 145 1.9 195 .9948456363 245 .988
46 0.5 96 1.4 146 1.4 196 .9955013109 246 .980
47 0.5 97 1.4 147 0.9 197 .9958897393 247 .983

48 0.5 98 1.6 148 0.8 198 .9962683734 24$ .977
49 0.5 99 1.6 149 0.6 199 .9973002039 249 .843



3. The procedure for binary compuiters

The method for binary machines is much the same as for the decimal

case; the constants change, of course, and the first four octal digits

of u are used to locate a discrete variable, rather than the first

three in the decimal case. The binary program requires,456 storage

locations (456 base 10 = 707 base 8). Here is the outline for a binary

machine; all numbers in the outline are octal except the number of the step:

Let u = b b1 b2 b 3 b 4b 5..be a uniform [0,1] random variable, the

b's its octal digits. Let the constants 0(n) be stored in.Memory

locations n = 0,l,2,...,707. Let 6 =2

1. If 00 < b 1b2 < 54, put x = C(b 1b 2) +(.5b6-.)

2. If 540 K b 1b 2b3 < 733, put x = C(b 1b 2b 3 - 506) + (.b 5b 6... )b

3. If 7330 b 1b 2b3 b4 < 7571, put x = C(b lb2b3 b4 - 7161) + (b5b6..)

4. If .7571 <Ku < .776474207403, Put J = 330 and go to step 6.

5. If .7764742074,03 < u < 1, form pairs x.lx 2:

3 2 _-2ln u 3*32_2ln u3
u,=ul 2 + ~2 x2 = U2[-- -2

1 2 U1 + 2

until one of the pair x., x 2  is 3, and let that be x; u1  and u 2
2 2

are conditioned by u 1 + u 2 < 1.

6. Test: In u(<C(J)? If yes, go to step 7. If nog put J =J +1

and repeat step 6.

7. Test: Is u < C(J + 60)? If yes, go to step 9. If no, go to step 8.

8. Generate new u and put x = C(j - 60) + bu.

9. Generate new u,u 2 . Test: Is max(ul,u2) < c(j + 140)? If Yes,

put x = C(J - 60) + b Min(u 1 ,U2 ). If no, let

W = - .5(C(J - 60) + b min(u 1 ,u 2]- [C(j - 60) + b

and test: Is lul - u21 < C(j + 220)(ew - 1)? If Yes, Put

X = C(J 60) + b min(u 1 Pu2). If no, repeat step 9.
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To generate a nornal variable X in a binary computer:

Begln with bjb = .

bjb 4x C(bjb2) + (.bsb6 ...J Exit

b3=C2 b3 < 33 9C* +b 6. Exit

bbh2b3 b4 < 75 71 x =C(b, b2b3 b4 -7161) + S(.bsh. Exit

NO<(+2O~w1
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4. Remarks

The fast parts of the program, steps 1 - 2 for the decimal and

1 - 3 for the binary, are used most of the time. They should be written

in machine language, with care. A procedure for assigning a random

+ must be incorporated, too. The remaining steps can be written in

FORTRAN or some such language with little effect on the average running

time.

We have written programs based on this procedure for the IBM 1620

(decimal), and the IBM 7090 (binary) machines. The programs are

written as standard FORTRAN function subprograms with the necessary

linkages, setting index registers, returning X in normalised floating

form, etc. In the IBM 7090, each call to the subroutine for a normal

variable requires about 50 cycles, which gives a rate of about 10,000

per second. If the procedure is incorporated in a larger program and

not written as a standard subroutine, then rates of about 15,000 per

second are possible. The standard subroutine for the IBM 7090 requires

about 1,300 storage locations, including the space for the coanstants

and for the instructions.

The IBM 1620 decimal machine is quite a bit slower. The above

procedure, written as a standard FORTRAN subprogram for that machine,

with necessary linkages, returning X in normalized floating point

form, etc., takes about 20 milliseconds. The constants and the

instructions require about 4,000 core storage positions.
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